
Adventures of the coupled Yang–Mills oscillators: II. YM–Higgs quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 61

(http://iopscience.iop.org/0305-4470/39/1/005)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 61–72 doi:10.1088/0305-4470/39/1/005

Adventures of the coupled Yang–Mills oscillators: II.
YM–Higgs quantum mechanics

Sergei G Matinyan1,3 and Berndt Müller2

1 Yerevan Physics Institute, 375036 Yerevan, Armenia
2 Department of Physics, Duke University, Durham, NC 27708, USA

Received 30 June 2005, in final form 4 November 2005
Published 7 December 2005
Online at stacks.iop.org/JPhysA/39/61

Abstract
We continue our study of the quantum mechanical motion in the x2y2 potentials
for n = 2, 3, which arise in the spatially homogeneous limit of the Yang–
Mills (YM) equations. In the present paper, we develop a new approach to
the calculation of the partition function Z(t) beyond the Thomas–Fermi (TF)
approximation by adding a harmonic (Higgs) potential and taking the limit
v → 0, where v is the vacuum expectation value of the Higgs field. Using
the Wigner–Kirkwood method to calculate higher-order corrections in h̄, we
show that the limit v → 0 leads to power-like singularities of the type v−n,
which reflect the possibility of escape of the particle along the channels in the
classical limit. We show how these singularities can be eliminated by taking
into account the quantum fluctuations dictated by the form of the potential.

PACS numbers: 05.45.Mt, 03.65.Sq, 11.15.Kc

1. Introduction

Here we continue our study of the quantum mechanical motion in the x2y2 potentials of phase
space dimensions 2n with n = 2, 3, which arise in the spatially homogeneous limit of the
Yang–Mills (YM) equations. As is well known [1] (see [2] for a review), these systems exhibit
a rich chaotic behaviour despite their extreme simplicity. In particular, the n = 2 model, the
central object of this and also our previous investigation (see [3]—we will henceforth refer to
this work as I), has been widely studied.

Classically, this model possesses a logarithmically divergent volume of energetically
accessible phase space �E [2, 4],4 but its quantum mechanical version (YM quantum
mechanics, YMQM) has a discrete spectrum [6, 7]. Physically, the explanation is obvious:
quantum fluctuations, e.g. zero-point fluctuations, forbid that the trajectory escapes along the

3 Present address: 3106 Hornbuckle Place, Durham, NC 27707, USA.
4 This is in violation of Weil’s famous theorem [5], which states that the average energy-level density dN/dE is
asymptotically proportional to �E.
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x- or y-axis where the potential energy vanishes. The system is thus confined to a finite
volume, and this implies the discreteness of the energy levels. Classically this escape is
always possible without increasing energy. As we shall see below, these classically allowed
configurations result in singularities of the quasiclassical partition function.

In I we calculated the higher-order quantum corrections to the partition function (heat
kernel) Z(t) for the x2y2 potential using the approximation [8, 9] based on the adiabatic
separation of the motion in x and y in the hyperbolic channels of the equipotential surface
xy = const. The main assumption of this method is that the final results of the calculations
do not depend on the artificial boundary Q dividing the central region x, y ∈ [−Q,Q] from
the channels x, y ∈ [Q,∞]. We showed in I that this assumption, after improvement of the
quantum mechanical treatment of the motion in the channels, is correct not only for the
Thomas–Fermi (TF) term but also for the leading (in powers of tQ4 � 1) higher-order
quantum corrections, and we derived Q-independent asymptotic series in the parameter
λ2 = g2h̄4t3 for contribution of each region to Z(t).

In the present paper, as in I, we explore the properties of the x2y2 model beyond the TF
approximation, but we pursue a different approach. We calculate the higher-order corrections
to Z(t) as in [10] by starting from the Yang–Mills–Higgs quantum mechanics (YMHQM) and
taking the limit v → 0, where v is the vacuum expectation value of the Higgs field. In the
n = 2, 3 x2y2 models, v determines the strength of the harmonic potential

V (x, y) = 1
2v2(x2 + y2) (n = 2),

V (x, y, z) = 1
2v2(x2 + y2 + z2) (n = 3).

Due to the above-mentioned logarithmic infinity of the classical phase space volume of the x2y2

model it is impossible to completely disentangle the nonlinear coupled oscillators from the
harmonic oscillations generated by the Higgs potential leading to a term in Z(t) proportional
to ln v. In the n = 3 case, which has a finite phase space volume at fixed energy, this method
yields an expression for Z(t) that coincides in the limit v → 0 with the one obtained by
the adiabatic separation method [9]. This is due to the negligible time spent by the classical
trajectory in the depth of the hyperbolic channels [9]. Higher-order corrections change this
situation essentially, as we shall see below.

Here we use the approach of [10] with the limiting procedure v → 0 for the calculation of
Z(t) beyond the TF approximation by applying the Wigner–Kirkwood (WK) method [11–13]
(see [14] for a review of the WK method). The higher-order corrections O(h̄k) in the WK
approach lead to a new phenomenon in the limit v → 0: for k � 2, they yield power-like
singularities of the form v−k . These singularities are not cancelled at a given power k as
one might expect. The situation is completely different when one includes the quantum
fluctuations in the channels of the x2y2 potential to all orders. These generate a confining
potential, which does not disappear in the limit v → 0, closes the flat direction and eliminates
the mentioned singularities, which are essentially classical. Taking these fluctuations into
account, we are able to compare the expression for Z(t) obtained by our method with the
result for Z(t) obtained by the method of [8, 9] in the TF approximation.

Concerning the n = 3 case with its finite phase space volume, the singularities appear also
at the higher-order corrections in contrast to the TF approximation and again are eliminated
by the quantum fluctuations corresponding to the specific quartic form of the potential
characteristic of the YM quantum mechanics5.

5 In the corresponding supersymmetric Yang–Mills quantum mechanical system, the wavefunction is not confined
due to the cancellations between bosonic and fermionic degrees of freedom, and a continuous spectrum coexists with
a discrete one [15].
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Finally, we develop a novel approximation scheme, which relies on a resummation of
certain terms in the WK expansion and thus introduces a nonvanishing Higgs potential, which
avoids the divergences of the 1/vk approximation. This approach is motivated by the need to
take the quantum fluctuations inside the hyperbolic channels into account even in the lowest
order approximation. We show that the new approach reproduces the TF result obtained with
the method of [8, 9] without requiring an artificial subdivision of the phase space into different
regions. A modified WK expansion can be derived to systematically improve on this result.

In the next two sections we present the YMH system and the WK method of calculating
Z(t) beyond the TF approximation. In section 4 we analyse the singularity structure of the
higher-order terms in the WK expansion in the limit of vanishing Higgs potential. In section 5
we show how these singularities can be avoided by a rearrangement of the WK series. Finally,
we briefly consider the three-dimensional YM–Higgs system.

2. Yang–Mills–Higgs classical and quantum mechanics: the Thomas–Fermi
approximation

There are several mechanisms that can suppress and even eliminate the classical chaos of the
YM system (see [2]). One is the Higgs mechanism [16]. For spatially homogeneous fields
(long wavelength limit of YM system), if only the interaction of the gauge fields with the
Higgs vacuum is considered, the classical Hamiltonian for n = 2 is given by the expression

H = 1

2

(
p2

x + p2
y

)
+

g2

2
x2y2 +

v2

2
(x2 + y2), (1)

where v = 〈φ〉 is the vacuum expectation value of the Higgs field φ. It is known [16] that there
is a classical transition from chaos to regular motion as v gets large enough. More precisely,
the chaos disappears when g2v4/E > 0.6 [16], where E = H is the energy. The analogous
transition in the adjacent energy-level spacing distribution was predicted [17] and established
in several papers [18]. The quantized counterpart of (1) is

Ĥ = −h̄2

2
∇2

x,y +
g2

2
x2y2 +

v2

2
(x2 + y2). (2)

As in I, we measure all quantities in units of the energy E with dimensions [H ] = 1,

[t] = −1, [x], [y] = 1/4, [g] = 0, [v] = 1/4, [h̄] = 3/4.
It is obvious that the operator (2) has a discrete spectrum as it has for v = 0. The TF

approximation to the heat kernel or partition function Z(t) = Tr[exp(−tĤ )] is the standard
lowest order semiclassical approximation valid for small h̄t3/4 � 1. It is obtained by
substituting the classical Hamiltonian for its quantum counterpart and replacing the trace
of the heat kernel by the integral over the phase space volume normalized by (2πh̄)−n, where
2n is the phase space dimension. In other words, the TF approximation takes into account
only the discreteness of the quantum mechanical phase space, but considers momenta and
coordinates (in our case, the field amplitudes x and y) as commuting variables. This method
was used in numerous papers (see, e.g. [8–10]). For the calculation of the energy-level density
ρ(E) = dN(E)/dE at asymptotic energies, the TF approximation is a consistent approach
since, as we shall see below, all corrections to the TF term are structures with factors h̄kt�

with k, � being positive integers. For the asymptotic energy-level density ρ(E) or N(E) these
corrections are negligible according the Karamata–Tauberian theorems [6, 7] relating the most
singular part of Z(t) to the asymptotic level density, N(E) = ∫

dE ρ(E) = L−1[Z(t)/t],
where L−1 denotes the inverse Laplace transform.
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In [10] Z(t) and N(E) were calculated for the Hamiltonian (1). We give the precise
expression for Z(t) of the YMHQM system in the TF approximation

Z(t) = 1√
2πgh̄2t3/2

exp

(
tv4

4g2

)
K0

(
tv4

4g2

)
, (3)

where K0(z) is the modified Bessel function of the third kind. For the most interesting limit
v → 0 we get

Z(t) → 1√
2πgh̄2t3/2

(
ln

8g2

tv4
− C

)
, (4)

where C is the Euler constant. The impossibility of disentangling the coupled oscillators
from the uncoupled ones is expressed by the logarithmic divergence of the phase space
volume for n = 2 as we already mentioned in the introduction. Below we compare (4)
with the corresponding expression for Z(t) obtained in [8, 9] for the pure x2y2 model.
Because we shall often encounter the pre-factor appearing in (3) and (4) in the following, we
introduce the special symbol K for it:

K = (2πg2h̄4t3)−1/2 ≡ (2πλ2)−1/2. (5)

3. Beyond the TF approximation: the Kirkwood–Wigner expansion

In the present paper, unlike in I, we apply the WK expansion in all of phase space, avoiding the
division of the phase space into a central region and hyperbolic channels. As we will see below,
this poses no problems as long as v �= 0. However, singularities appear in the limit v → 0,
unless the WK expansion is modified to include quantum fluctuations in a nonperturbative
way.

Since we described the WK method in detail in I, we only give a very brief outline here.
We start from equation (I-12), a set of recurrent differential equations for the kernels Wk of
the partition function Zk(t) at the kth order in h̄:

Zk(t) = h̄k

(2πh̄)2

∫
d� Wk(�r, �p; t) e−tH , (6)

where d� = dx dy dpx dpy and the classical Hamiltonian H is given by (1). We begin with
the partition function at second order in h̄ (k = 2). Integrating over px and py and making
use of the symmetry of the Hamiltonian (1) with respect to the interchange x ↔ y, we obtain∫

d� W2 e−tH = πt

3

[(
−g2 +

tv4

2

)
I10 +

tg4

2
I21 − v2I00 + tg2v2I11

]
, (7)

where we have used the notation (for m � n):6

Imn = 4
∫ ∞

0
dx

∫ ∞

0
dy x2my2n exp

[
− t

2
(v2(x2 + y2) + g2x2y2)

]
. (8)

Note that the factors h̄2 from the KW expansion and from the normalization of the phase
space volume element have cancelled, making Z2 independent of h̄. Integrating over y and
introducing the new variable u = g2x2/v2, we obtain

Imn =
√

2π(2n − 1)!!(v2)m−n

tn+ 1
2 g2m+1

∫ ∞

0
du um− 1

2 (1 + u)−n− 1
2 e−uz (9)

6 Note that the case m = n needs to be calculated separately from the case m > n.
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with z = tv4/2g2. The integral over u is related to the Whittaker function Wλ,µ(z) (see [19],
equation (9.222.1)):

Imn =
√

2π(2n − 1)!!(v2)m−n

tn+ 1
2 g2m+1

ez/2z− m−n+1
2 �

(
2m + 1

2

)
W− m+n

2 , m−n
2

(z). (10)

For m = n the Whittaker function has only a logarithmic divergence at z = 0. For m − n � 1
power-like singularities appear. For completeness we give Z2(t) explicitly

Z2(t) = tv2

12
√

2πgt1/2

[
2

(
−1 +

tv4

2g2

)
z−1�

(
3

2

)
W− 1

2 , 1
2
(z) + z−1�

(
5

2

)
W− 3

2 , 1
2
(z)

− 2z−1/2�

(
1

2

)
W0,0(z) + 2z−1/2�

(
3

2

)
W−1,0(z)

]
. (11)

As is easily seen from (11), Z2(t) has a singularity of the form v−2 at v = 0. Using the limit
of the Whittaker function Wλ,µ(z) for small z, we find

Z2(t) → −K
h̄2g2t3/2

6(tv4)1/2
(v → 0). (12)

For completeness we give here Z2 from the KW method in the limit g = 0, i.e. for two free
harmonic oscillators using the asymptotic form of the Whittaker function

Z2(t) = − 1
12 . (13)

Together with the expression for the TF term [10] we have

Z0(t) + Z2(t) = 1

h̄2v2t2

(
1 − 1

12
h̄2v2t2

)
, (14)

which are the first two terms in the Taylor expansion of the exact partition function for the
two-dimensional harmonic oscillator at small h̄vt :

Z(t) = [
2 sinh 1

2h̄vt
]−2

. (15)

4. Higher-order corrections and the limit v → 0 for YMHQM

At higher order h̄k (k � 2) the mathematical structure of terms Wk and Zk changes essentially.
In expression (8) higher powers m and n appear and the difference between them increases
(m − n � 1), causing the second index of the Whittaker function to exceed µ = 1/2. As a
result, in the limit z = tv4/2g2 → 0 the finite sum of the power-like singular terms of Wλ,µ(z)

begins to play a crucial role.
A systematic analysis of the higher-order corrections using Mathematica leads to the

conclusion that there is a correlation between the power of h̄ (for k � 2) and the most singular
terms in (10): m − n = k/2 (due to the symmetry against exchange x ↔ y it is always
possible to put m > n). The case m = n requires special consideration and, as found, leads
only to logarithmic singularities.

It is easy to see that the next, less singular terms correspond to the case m − n =
(k/2) − 2� (� = 1, 2, . . . , � < k/4). For the general expression of Z

(m,n)
k (t) we need to

determine the powers of g2 and t. For g2 it is simply g2m. To determine the power of t we
note that for each k there are always terms without factors of px and py and minimal power of
t at given k. For such terms the factor is t2m−n−1. For the terms containing factors of px and
py the power of t does not change after integration over the momenta. For the less singular
terms with m − n = 1

2k − 2� the corresponding factor is t2m−n−1−3�.
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Now we are in a position to write the general expression for the most singular terms
contributing to the partition function at the order of h̄k (k = 2, 4, 6, . . .). After integration
over px, py, x and y, keeping only terms having m − n = k/2 (k/2 � m � k, 0 � n � k/2)

we obtain

Z
(m,n)
k (t) = K

(
4g4h̄4t3

v4t

)k/4

�

(
k

2

)
(2m − k − 1)!!. (16)

We see that there are strong singularities at v = 0, and further analysis shows that these are
not cancelled by the summation of all most singular terms at a given k. For the less singular
terms with m − n = k/2 − 2� with � < k/4 we have

Z
(m,n,�
k (t) = K

(
4g4h̄4t3

v4t

)k/4 (
v4t

4g4

)�

�

(
k

2
− �

)
(2m − k − 1)!!. (17)

Due to the appearance of (m − n) in the argument of the Gamma function in (17), the case
with m = n must be considered separately. It is obvious that these terms have no power-like
divergences, but only logarithmic singularities like the TF term. We obtain

Z
(m=n)
k (t) = K(g2h̄4t3)k/4

[
ln

2g2

v4t
− 2C − ψ

(
m +

1

2

)]
, (18)

where ψ(x) is the logarithmic derivative of the Gamma function. Let us briefly discuss these
results. The power-like singularities in the KW approach for k � 2 are related to the possibility
of escaping classically along the axis x = 0 or y = 0, where, in the limit v → 0, the potential
energy vanishes. Non-zero v forbids such escape to infinity. These singularities affect any
classically calculated distribution function, in particular, the heat kernel Z(t). They also
show that the trajectories lie deep inside the channels most of the time. Quantum mechanical
fluctuations forbid any escapes along the axes.

The v−k singularities have more resemblance with the infrared singularities; they are
related to the behaviour at long distances and different from the usual ultraviolet divergences
connected with the asymptotic expansion in powers of hk . The absence of power-like
singularities for m = n is easily explained: for m = n the configurations dominate along the
diagonals (|x| = |y|), whereas for m � n the configurations populate the channels and have a
trend to escape if quantum fluctuations do not forbid this. It is thus clear that we have to take
into account the effect of the quantum fluctuations on the motion inside the channels, which
the perturbative expansion of the WK method fails to do.

5. Quantum fluctuations and power-like singularities

In this section we will attempt to include quantum fluctuations created by the form of x2y2

potential in a framework, which does not rely directly on the adiabatic separation of the motion
inside the hyperbolic channels as was elaborated in detail in I. Let us consider the motion
along the x-axis. The heat kernel for the x2y2 potential generates a mean spread in y at the
position x of the order of δy ∼ (g2x2(t/2)−1/2). Quantum mechanics dictates that the spread
of the conjugate momentum py is at least δpy � h̄g|x|(t/2)1/2. Analogous relations hold
between y and px : δpx � h̄g|y|(t/2)1/2 for the motion along the y-axis. We now propose a
modification of the WK formalism, which incorporates these relationships into the generating
functional for the expansion in powers of h̄.

To achieve this, we resum the term − 1
2h̄

2t (	V ) in the WK operator (I-10) to all orders
by writing

W(�r, �p; t) = W̃ (�r, �p; t) exp

(
−h̄2

4
t2	V

)
. (19)
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Inserting this definition into the differential equation (I-10) for the WK kernel W yields an
equation for the phase space function W̃ :

∂W̃

∂t
= h̄2

2

[
	 + t2(∇V )2 − 2it

h̄
( �p · ∇V ) − h̄2

4
t2(		V ) +

2

h̄
(i �p − h̄t∇V ) · ∇

− h̄2

2
t2∇(	V ) · ∇ − h̄

2
t2(i �p − h̄t∇V ) · ∇(	V )

]
W̃ . (20)

The term in the exponent of (19):

−h̄2

4
t2	V = −h̄2

4
g2t2(x2 + y2) (21)

acts like a Higgs potential with

v2
eff = h̄2g2t/2. (22)

What is unusual about this term is that the effective potential itself is time dependent. The
connection to the argument given at the beginning of this section becomes evident, when one
recognizes that the exponent represents the lower bound associated with the kinetic energy
demanded by the uncertainty relation:

1

2

(
δp2

x + δp2
y

)
� h̄2

4
t	V. (23)

It is straightforward to derive a recursion relation analogous to (I-12) for the coefficients
of the expansion of W̃ in powers of h̄:7

∂W̃k

∂t
= i �p · [∇ − t (∇V )]W̃k−1 +

1

2
[	 + t2(∇V )2 − 2t∇V · ∇]W̃k−2

−
[

it2

4
�p · ∇(	V )

]
W̃k−3

+

[
t3

4
∇V · ∇(	V ) − t2

4
∇(	V ) · ∇ +

t2

8
		V

]
W̃k−4. (24)

Before we apply this trick to the quartic YM oscillator, it is useful to briefly explore how
it works for the harmonic oscillator. It is easy to see that (24) yields the correct expansion for
the partition function for the potential V = 1

2v2x2. Indeed, by calculating W̃0, W̃2, W̃4 and
integrating over p and x, we obtain

Z̃0(t) = 1

h̄vt
e−(h̄vt)2/4,

Z̃2(t) = 5

24
h̄vt e−(h̄vt)2/4, (25)

Z̃4(t) = 127

5760
(h̄vt)3 e−(h̄vt)2/4,

giving the expansion in powers of (h̄vt) (up to h̄4) of the exact partition function of the
harmonic oscillator, Z(t) = (2 sinh h̄vt/2)−1. Note that, in this case, Z̃k contributes to all
powers in the h̄ expansion of Z(t) beginning with h̄k−1.

Now consider the nonlinear potential of the YM–Higgs Hamiltonian (2), for which
	V = g2(x2 + y2) + 2v2. The lowest order term of the partition function for the modified WK
expansion is easily obtained from (3) by substituting v2 → v2 + v2

eff :

Z̃0 = K exp

(
t

4g2

(
v2 + v2

eff

)2 − h̄2

2
v2t2

)
K0

(
t

4g2

(
v2 + v2

eff

)2
)

. (26)

7 Note that the expansion of W̃ in powers of h̄ does not yield an expansion of Z(t) strictly in powers of h̄ because of
the nonpolynomial factor containing h̄ in (19).
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The v → 0 limit of this expression is obviously nonsingular, allowing us to go to the pure
Yang–Mills limit:

Z̃
(v=0)

0 = K exp

(
h̄4

16
g2t3

)
K0

(
h̄4

16
g2t3

)
≈ K

[
ln

1

g2h̄4t3
+ 5 ln 2 − C

]
, (27)

which coincides (with logarithmic precision) with the result obtained in [8, 9] for Z(t).
Similarly, the second-order term (in the limit v → 0) is

Z̃
(v=0)

2 = g2t

24π
(4Ĩ 10 + g2t Ĩ 21) (28)

with

Ĩ mn = 4
∫ ∞

0
dx

∫ ∞

0
dy x2my2n exp

(
−1

2
g2x2y2t − h̄2

4
g2(x2 + y2)t2

)
. (29)

These integrals correspond to those defined in (8) with the substitution v2 → v2
eff . The

exact analytical expression for these integrals in terms of Whittaker functions was given in
(10). In the following we retain only the first term in the (finite) power series expansion
of the Whittaker function; later we shall correct for this simplification. Using the condition
z = g2h̄4t3/8 ≡ λ2/8 � 1, allowing us to neglect terms involving ln λ2 compared with terms
of the form λ−2, we obtain

Ĩ 10 =
√

2π

(g2t)1/2

4

(h̄gt)2
, Ĩ 21 =

√
2π

(g2t)3/2

4

(h̄gt)2
, (30)

yielding the result

Z̃2(t) = 5
3K. (31)

For Z̃4 we retain only terms with m − n = 2 as the most singular ones in the limit v → 0,
based on the usual arguments. This gives

Z̃4(t) = (h̄gt)4

2πh̄2t

[
1

30
Ĩ 20 +

g2t

180
Ĩ 31 +

(g2t)2

576
Ĩ 42

]
. (32)

For the needed integrals we obtain in the same approximation (λ2 � 1)

Ĩ 20 =
√

2π

(g2t)1/2

16

(h̄gt)4
, Ĩ 31 =

√
2π

(g2t)3/2

16

(h̄gt)4
, Ĩ 42 =

√
2π

(g2t)5/2

48

(h̄gt)4
. (33)

Substituting (33) into (32) we obtain

Z̃4(t) = 127

180
K. (34)

Collecting all results, we have

Z̃0+2+4(t) = K

[
ln

1

g2h̄4t3
+ 5 ln 2 − C +

427

180

]
. (35)

We improve upon the approximation made above to the Whittaker function and consider
the contribution of all singular terms in the asymptotic expansion of Wκ,µ(z) for small z:

m−n−1∑
p=0

�(m − n − p)�

(
n +

1

2
+ p

) (
−λ2

8

)p

, (36)

where again λ2 = g2h̄4t3. The complete expression for the contribution to Z̃k (k = 2, 4, 6, . . .)

from the most singular terms is

Z̃
(m,n)

k = K
2k(2n − 1)!!

�
(
n + 1

2

)
1
2 k−1∑
p=0

�

(
1

2
k − p

)
�

(
n +

1

2
+ p

) (
−λ2

8

)p

. (37)
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For the less singular terms
(
m − n = 1

2k − 2�, � < 1
4k

)
we get

Z̃
(m,n,�)

k = Kλ2� 2k−4�(2n − 1)!!

�
(
n + 1

2

)
1
2 k−2�−1∑

p=0

�

(
1

2
k − 2� − p

)
�

(
n +

1

2
+ p

) (
−λ2

8

)p

, (38)

and for the logarithmic term (m = n) we obtain

Z̃
(m=n)

k = Kλ
1
2 k

[
−ln λ2 + 3 ln 2 − 2C − ψ

(
m +

1

2

)]
. (39)

It is clear that these contributions again generate an asymptotic series in the small parameter
λ2 = g2h̄4t3 of the following form:

Z(t) = K

[
−ln λ2 + 5 ln 2 − C +

∑
k=2,4...

2k

k/2∑
n=0

a(k/2)
n

2k(2n − 1)!!

�
(
n + 1

2

)

×
1
2 k−1∑
p=0

�

(
1

2
k − p

)
�

(
n +

1

2
+ p

) (
−λ2

8

)p
]
, (40)

where the a
(k/2)
n

(
n = 0, 1, . . . , k

2

)
are the coefficients of the structures (g2t)nĨmn

(
m−n = k

2

)
in the expression

∫
d� W̃k e−Ht (k = 2, 4, 6, . . .), analogous to the coefficients a(n)

m (m = 0,

1, . . . , 3n) in (I-71). For k = 4, e.g., these numbers are

a
(2)
0 = 1

30
, a

(2)
1 = 1

180
, a

(2)
2 = 1

576
. (41)

We note that this asymptotic series closely resembles the one derived in I using a completely
different approach, splitting the x − y plane into two integration regions and treating the
quantum fluctuations exactly in the region containing the hyperbolic channels. The leading
logarithmic term is identical in both cases, but it is not clear that the constant coincides. The
expansion parameter λ2 is the same for both series. Unfortunately, our inability to find a
simple general algorithm for the coefficients, a

(k/2)
n here and a(n)

m in I, has prevented us to
compare the two results in detail. The less singular terms also lead, after summation over k, to
an asymptotic series in the parameter λ2. The same is true for the terms Z

(m,m)
k with m = n.

At the end of section 4 we commented on the analogy between the limit v → 0 and the
infrared problem. We now can make this analogy more precise. The infrared limit corresponds
to the behaviour of the system at large distances or deep inside the channels, in the terminology
of the paper I. When we compare the limiting forms for v → 0 of the quantities Imn derived
here with expression (I-25) for the analogous quantities derived for large distances (tQ4 � 1)

in I, we obtain the correspondence

Q2(m−n) ∼ m − n

�
(
n + 1

2

) 1

(tv2)m−n
. (42)

Evidently the limit v → 0 corresponds to the limit Q → ∞, supporting our claim that it
represents the infrared limit.

6. The three-dimensional YMHQM

Finally, we briefly consider the n = 3 case of the YMHQM model. The Hamiltonian for
n = 3 YMH classical mechanics is

H = 1

2

(
p2

x + p2
y + p2

z

)
+

g2

2
(x2y2 + y2z2 + z2x2). (43)
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In its quantum counterpart, �p2 is replaced with −h̄2∇2. As we know the contribution to Z(t)

from the channels is negligible in the TF approximation [9] if we apply the condition tQ4 � 1.
This is due to the fact that deep in a channel, e.g. along the x-axis, the energetically accessible
phase space volume gets pinched as x−2 and not as x−1 as it was for the n = 2 Hamiltonian.
This implies that the limit v → 0 is smooth and the expressions for Z(t) from [9] and [10]
coincide at v → 0. Already for the second correction to the TF term this is not true as we
shall see below. In the WK approach for Z2 using (I-12) and (6) we have

Z2(t) = 1

(2πh̄)3

∫
dpx dpy dpz dx dy dz W2( �p, �x; t) e−Ht , (44)

with W2 from (I-19). Integrating over the momenta, using the symmetry of the potential
energy in (43), we have

Z2(t) = t1/2

2(2π)3/2h̄

[
−g2I1 +

g4t

4
I2

]
, (45)

where integrals I1 and I2 over x, y, z are given by

I1 =
∫ ∞

0
dx dy dz x2 e−V (x,y,z)t , (46)

I2 =
∫ ∞

0
dx dy dz x2(y2 + z2) e−V (x,y,z)t (47)

with

V (x, y, z) = g2

2
(x2y2 + y2z2 + z2x2) +

v2

2
(x2 + y2 + z2). (48)

Integrating over x and using polar coordinates r, φ for the integrations over y and z we obtain

I1 = 1

2

(
2π

t

)3/2 ∫ ∞

0
r dr

exp
(− 1

16 tg2r4 − 1
2 tv2r2

)
I0

(
1
16 tg2r4

)
(v2 + g2r2)3/2

, (49)

I2 = 1

2

(
2π

t

)3/2 ∫ ∞

0
r5 dr

exp
(− 1

16 tg2r4 − 1
2 tv2r2

)
I0

(
1

16 tg2r4
)

(v2 + g2r2)3/2
, (50)

where I0(z) denotes the modified Bessel function of the first kind. We see that I1 is divergent
at r = 0 if v = 0 in contrast to the TF term.

Again, we obtain a smooth transition in the limit v → 0 if we make the substitution used
in section 5 before taking the limit v → 0. As for the n = 2 model, here also the zero-
point quantum fluctuations in the channels generate an effective Higgs potential 1

4h̄
2g2t (x2 +

y2 + z2) and render the integral I1 convergent. After this substitution, introducing the new
variable u2 = 1

16 tg2r4, we get

Z2(t) =
√

2t3/4

h̄g1/2
[−J0(λ) + 4J2(λ)] (51)

with λ = gt3/2h̄2(�1) and

Jb(λ) =
∫ ∞

0
ub du

e−u2−λu

(λ + 8u)3/2
. (52)

Expanding the exponential function in the small parameter λ, the integral (52) can be expressed
as a finite sum of the generalized hypergeometric functions. Retaining the main terms we have

J0(λ) ≈ 1

4
√

λ
, J2(λ) ≈ �

(
3
4

)
32

√
2
. (53)
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Thus, the second-order correction Z2(t) for the n = 3 YM model becomes

Z2(t) ≈ L

[
1 − �

(
3
4

)3

25/4π3/2
(g2h̄4t3)1/4

]
, (54)

where

L = 1
2�

(
1
4

)3
(2π2g2h̄4t3)−3/4 (55)

is the TF term found in [9, 10]. We see from (54) that the quantum corrections at the order h̄2

are parametrically enhanced due to the quantum fluctuations generated by the effective Higgs
potential 1

2h̄
2g2(x2 + y2 + z2)t .

7. Conclusions

We have shown in I and here that the richness of the classical YM mechanics with the x2y2

potential translates into, and even gets amplified by, the quantum mechanical properties of
the system. The YM quantum mechanics exhibits a confinement property, which strongly
influences the quantum mechanical motion in the x2y2 potential. At higher orders in h̄ (up to
h̄8) this results in the vanishing of the leading quantum corrections, when we correctly take
into account this property for the motion in the hyperbolic channels. We convinced that this
property survives at higher orders, although we did not explicitly demonstrate it.

Here we calculated the quantum corrections to the partition function by adding a Higgs
term to the potential, and found that power-like singularities arise in the limit v → 0. We
associate these essentially classical singularities with the fact that the Wigner–Kirkwood
expansion does not take into account the effect of the quantum fluctuations on the motion
within the channels. When these fluctuations, which are dictated by the uncertainty relation
and the hyperbolic form of the channels, are taken into account, the escape along the coordinate
axes, which is classically allowed, is prohibited, and the singularities disappear. As a result,
the Thomas–Fermi term for the partition function acquires a renormalization expressed in
terms of an asymptotic series in the parameter λ2 = g2h̄4t3 within both approaches.

We hope that the lessons we elicited from the present study of the higher-order quantum
corrections to the homogeneous limit of the Yang–Mills equations will be useful for an
improved understanding of the internal dynamics of the Yang–Mills quantum field theory.
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